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1.0   Introduction and Summary 

The USAF Probabilistic Rotor Design System 
(PRDS) contract (F33615-90-C-2070) was 
designed to develop, validate, and demonstrate 
a probabilistic alternative to existing determin- 
istic design philosophy. The full statement of 
work is reproduced in Appendix A. 

The Phase I (Data Acquisition) Interim Report 
(Reference 1) documented the following: 

• Compilation of data from FAA failure 
statistics, GEAE cracking investigations 
and laboratory method validations. This 
data was used both to support analysis of 
the effectiveness of current design practices 
and analytical tools, and as background for 
a definition of acceptable risk. 

• Review of GEAE cracking investigations 
to identify occasions of excessive stress or 
temperature, poor material properties, 
inherent material inclusions, manufactur- 
ing damage and so forth, to assess the 
effectiveness of current design practices 
which are largely based on safety factors. 

• Analysis of laboratory data to assess the ac- 
curacy of specific analytic tools used dur- 
ing the design process. 

• Identification of the principal failure modes 
to be incorporated into the probabilistic de- 
sign analysis system and listing of the po- 
tential drivers or failure causes (which in- 
clude stresses, temperatures and gradients). 

• Algorithmic development and program 
flowcharting addressing four principal fail- 
ure modes. As part of this development, 
relevant parameters such as part 
dimensions, inclusion sizes, speeds, tem- 
peratures and so forth were identified, and 
the approaches to be taken to integrate vari- 
ations in these parameters into estimated 
risk outlined. 

• Utilization of the FAA statistics gathered in 
Task 1 to draw conclusions concerning risk 
of disk failure in today's commercial en- 
gine fleet. It was assumed that design prac- 
tices and analytical tools are largely the 
same regardless of the application (i.e. mili- 
tary or commercial), and hence that conclu- 
sions drawn from the FAA data are broadly 
applicable. Data was sorted by failure cause 
at the component level, and some trends 
were observed. Failure of turbine disks is 
more likely than failure of compressor 
disks is more likely than failure of fan disks. 
Disk failures are most often not design re- 
lated. 

• Developed a rationale for the application of 
probabilistic design and used the FAA data 
to suggest an acceptable level of risk for de- 
sign! 

This report documents Phase II effort - Method 
Development. It begins with an introduction to 
the concept of designing probabilistically 
against failure and a comparison of three stan- 
dard approaches to estimating failure probabil- 
ity. Following this, the philosophy is laid out 
for PDAS, a software package which facilitates 
application to the design process of probabilis- 
tic algorithms and optimization tools. 

The development of PDAS was motivated by 
and initiated under this contract. It is built on 
preexisting probabilistic fracture mechanics 
software developed at GEAE to address inclu- 
sion initiated cracking in fracture critical com- 
ponents. Fatigue, burst, and plastic deforma- 
tion failure modes were addressed in principle 
in the Phase I Interim report, and PDAS has 
been applied at GEAE for probabilistic analysis 
of HCF and creep in blades. These failure 
modes were not evident, however, in the testing 
of Phase HI of the PRDS program - Method 
Validation. 



A general strategy is outlined for application of 
probabilistics with three specific examples pro- 
vided to demonstrate the integration of statisti- 
cally describable variability into design analy- 
ses. Specific proposals are then made for set- 
ting part lives using probabilistics. The report 
concludes with a detailed summary of the 
PDAS template language and its application to 
managing response surface analyses. 
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2.0   Introduction to Probabilistic Design Analysis 

Science (hence, science-based engineering) 
builds upon the conviction that the world works 
by cause and effect; actions are predictable 
functions of initial conditions given the right 
equations and adequate computational power. 

If inputs can be accurately measured, and out- 
comes are not overly sensitive to allowable 
deviations, this ideal is achievable. A gearbox 
predictably converts rotation of the input shaft 
into rotation of the output shaft. A hydraulic 
actuator translates electric potential into ram 
force with relatively little deviation from a gov- 
erning empirical equation. 

Often, however, it is the case that controlling 
parameters are poorly characterized and widely 
variable, and/or that response is sensitive to 
small parameter changes, and/or that response 
exhibits a degree of randomness which cannot 
be tied to identified parameters. Fatigue life is 
correlated to grain size, but grain size is only an 
approximate measure and the correlation is not 
perfect - scatter is observed. Cause and effect 
works on average, but the deviations can not be 
dismissed. 

Variability is an annoying fact of life for all 
designers and manufacturers. Products from 
ball bats to bridges do not always perform as 
advertised with failures ranging from partial 
and of little consequence to total and 
catastrophic. The options available to prevent 
failures are sometimes limited, may be counter- 
productive and in some cases may simply not 
be worth the trouble. 

Baseball bats sometimes crack; the result is 
most often not life-threatening and, therefore, 
little has been done to redesign the concept to 
reduce the occurrence. Bridges sometimes col- 
lapse; the result is often loss of life and usually 
disruption of commerce and mobility. Civil 
engineering practices consequently opt for 
overdesign of such structures. Critical support 

elements may be sized to handle two or three 
times the maximum foreseeable service load. 

There are situations when overdesign is not 
practical, for example where added bulk 
defeats the purpose of a system. Excess weight 
hinders performance in flight for birds, for air- 
craft, and for space systems. Aerodynamic 
forces of weight and drag can be overcome by 
thrust, but thrust requires energy, depletion of 
natural resources, and increase in pollution. In 
military applications, increasing weight 
decreases survivability when maneuverability 
is critical. 

A design may be adjusted by rules of thumb and 
the risk of failure subsequently ignored as 
extremely (or, at least, adequately) remote, or 
the likelihood of failure may be recognized, 
quantified and controlled. Probabilistic design 
analysis methods attempt the latter. In the sim- 
plest case: 

1. System response is completely determined 
by parameters pi, P2, ..., pn which are 
statistically distributed with distribution 
D(pi,p2, ...,pn)- 

2. The response can be quantified as a func- 
tion of the parameters: R(pi, P2, •••, Pn)- 

3. A failure region can be specified: {pi, p2, 
..., pn: R(p 1, P2,..., pn) represents failure}. 

In theory, this information is sufficient to 
determine a failure probability, a measure of 
risk. The design can be adjusted and/or the 
parameter distributions controlled to hold fail- 
ure probability below an appropriate limit. 

Much published research focuses on tools used 
to estimate failure probability (see Reference 2 
for a summary of current approaches). In the 
next two sections, three algorithms will be eva- 
luated: Direct Numerical Integration, Monte 
Carlo Integration, and the First Order Reliabil- 
ity Approximation. 



2.1 An Example 

The following scenario, while admittedly con- 
trived, is easily stated yet challenging. 

Problem Statement 

Assume that there are identical pressure waves 
incident on a target produced by two simulta- 
neous detonations separated by a distance 2v. 
The midpoint of the detonations is related to the 
target by coordinates (x, y) relative to axes cen- 
tered at the midpoint (Figure 1). Targeting is 
not precise. The point (x, y) is symmetrically 
binormally distributed about a nominal center 
(xo, yo) witri standard deviation a. Failure of 
the site occurs if the total pressure exceeds an 
ultimate value p. What is the failure probabili- 
ty? 
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Figure 1.   Dual Pressure Waves Hitting a 
Target. 

Peak pressure from each detonation varies in- 
versely with the square of the distance from the 
center. Total peak pressure will be approxi- 
mated by the sum of the individual peaks: 

P(x, y) = p- [(x - v)2 + y2]"1 + p- [(x + v)2 + y2]"1 

The failure region {(x, y): P(x, y) > p} can have 
a variety of shapes as shown in Figure 2 for the 
specific choices (xo, yo) = (0.3), p = 1 and three 
values of v: 0.7, 1.3 and 2.0. With a set to 1, 
estimates are made of the probability F 
associated with each failure region: 
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Figure 2.   Failure Regions. 



Direct Numerical Integration 

ymax(x) 

1       f r(x-Xo)2!   f = 2n J   eXp[^^J J exp 

YminM 

(y-y0)2 

2a2 dydx 

where: 
ymin(x) and ymax(x) solve the equation P(x,y)=p 

Monte Carlo Integration 

A random sample of points is generated from 
the binormal distribution: {(XJ, yO : i=l,106}. 

F=fraction of points satisfying P(xj, y,) > p 

First Order Reliability Approximation 

The failure regions are simply bounded as in 
Figure 3. 
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Figure 3.   First Order Approximation to 
Failure Region. 

F=N(-D/a) 

where: D is the distance of the point (XQ, yo) 
from the shaded half-plane, and N(z) is the 
standard normal distribution. 

The results are compared in Table 1. Direct 
numerical integration and Monte Carlo integra- 
tion yield essentially identical estimates for all 
three values of v; the first order reliability 
method, as implemented, is uniformly conser- 
vative. The latter estimate could be improved 
by choosing different bounding regions (e.g. 
the polyhedral region shown in Figure 4), but 
evaluation of the probabilities associated with 

the more complex regions is generally no easier 
than executing the exact numerical integra- 
tions. 

Table 1.   Failure Results Comparison. 

V 
Direct 

Numerical 
Integration 

Monte 
Carlo 

Integration 

First Order 
Reliability 

Method 

0.7 

1.3 

2.0 

0.0295 

0.0169 

0.0054 

0.0297 

0.0171 

0.0050 

0.0387 

0.0266 

0.0244 

<*>T 

Figure 4.   Polyhedral Approximation to 
Failure Region. 

2.2 Discussion of the Estimation 
Algorithms 

Realism could be added to the example of the 
preceding section by correctly modeling the 
propagation of the wavefronts and by adding 
probabilistic dimensions. For example, the fol- 
lowing could be treated as random variables: 

• The critical pressure p sustainable by the 
target. 

• The spatial separation of the detonations. 

• The angular orientation about the mid- 
point of the detonations. 

• The magnitudes of the detonations. 

• The time between detonations. 



Both direct numerical integration and first 
order reliability approaches become less feasi- 
ble as the dimension of the problem increases. 
Both suffer from the necessity to clearly specify 
failure regions; the latter requires additional 
effort to define bounding polyhedra which are 
themselves not easily integrated. 

By contrast, the performance of Monte Carlo 
integration does not intrinsically depend on 
problem dimension. The coefficient of 
variation of the estimator (a measure of conver- 
gence) is [(1 -0)/6n]1/2, depending only on the 
probability being estimated, 9; and the number 
of iterations, n. While Monte Carlo is more 
robust than the other two approaches, in this 
respect there are issues which must be 
addressed: 

Convergence 

The number of iterations required to estimate 
a small probability is very large. The number 
of iterations required to maintain a given co- 
efficient of variation, R, is approximately in- 
versely proportional to the probability being 
estimated: 

n = (l-e)/6R2 

n = 1/OR2 for small values of 0 

(Confident estimation to within a factor of 2 
of the true value of a probability on the order 
of 1/10,000 requires roughly 10,000 trials.) 

Fortunately, it is often possible to modify 
Monte Carlo by effective acceleration tech- 
niques, significantly improving convergence 
rates (see Reference 3 for discussions of stra- 
tified sampling, importance sampling and 
Latin hypercube sampling). 

Cost 

Even the fastest Monte Carlo algorithm may 
be prohibitive in applications where each it- 
eration is computation intensive (requiring, 
for example, refined finite element analysis). 

Given sufficient continuity (or smoothness), 
a system can be approximated by a response 
surface constructed to interpolate analyses 
run at a selected grid of parameter points. 
With a response surface set, millions (even 
hundreds of millions) of Monte Carlo trials 
can be run at little additional cost. It may be 
countered that too many points are required to 
fit a high dimension response surface, but 
lacking the requisite system analysis, mean- 
ingful probabilistic estimates are simply not 
possible. 

(It is emphasized that the above definition of 
"response surface" allows for more than a 
single linear or quadratic functional approxi- 
mation.) 

Numerical Traps 

Good pseudorandom number generators are 
required for Monte Carlo. 

While this seems a simple requirement, 
research has shown that common, older algo- 
rithms can generate sequences which cycle 
with very short periods. For example, an algo- 
rithm provided in Reference 4 based on the 
Multiplicative Linear Congruential (MLC) 
Method (Reference 5) can produce sequences 
with periods as short as 8,192 (Reference 6). 
Newer algorithms have been developed based 
on the Lagged Fibonacci (LF) Method with 
periods exceeding 1040 (Reference 7). 

Also of concern are correlations between 
dimensions when points are generated by 
pulling xi(i) from the generator, then x2(i), 
and so on. Correlations invalidate the assump- 
tion of independence. Four examples of 
correlated sequences generated by the refer- 
enced MLC algorithm are shown in Figure 5. 
The LF algorithms seem not to suffer this 
problem. 

Much effort has been spent developing algo- 
rithms derived from the first order and related 
second order reliability approximations and 
three commercially available computer pro- 
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Figure 5.   Correlated (x,y) Sequences Generated by MLC Algorithm. 

grams are reviewed in Reference 8: NESSUS, 
PROB AN and CALREL (References 9-11). 
The comment is often made that there is no 
alternative when problems involve hundreds of 
random variables. 

Approximation techniques can be effective. It 
is easy to calculate the probability, P, of a hyper- 
cube whose sides are independent random vari- 
ables having known distributions. If it can be 
shown that the hypercube avoids the failure 
region, then 1-P upper bounds the failure prob- 
ability. When this is an acceptable estimate, 
why do more? 

Approximation techniques are not always 
good. First and second order reliability algo- 
rithms can be applied blindly since it is easy to 
assume a failure region to be bounded by a 

hyperplane even if it is not. Given the Section 
2.1 example demonstrating that even simple 
phenomena can yield complex failure regions, 
caution should be exercised when computing a 
problem involving hundreds of random vari- 
ables, even if there are no alternatives. 

2.3 Probabilistic Design Analysis 
System (PDAS) 

The algorithms reviewed in Sections 2.1 and 
2.2 could be presented briefly given that the 
example involved a simple algebraic response 
function. A probabilistic analysis of a complex 
structure works conceptually the same. Con- 
trolling parameters are identified. These are 
varied and the response observed. A failure 
region is identified and its probability volume 
estimated. 



Simplicity vanishes, however. All probabilistic 
algorithms require multiple analyses, and each 
analysis of a complex structure tends to be, for 
lack of a better word, complex. A typical tur- 
bine engine disk analysis requires geometric 
definition, finite element meshing, thermal and 
stress solutions, and life calculations. This must 
be preceded by a cycle definition: rotor speeds, 
gas temperatures, pressures and flow rates, 
requiring additional analysis. The analyses all 
require data: measured engine parameters, heat 
transfer coefficients, coefficients of expansion, 
tensile curves, fatigue curves, and crack growth 
rate curves. 

PDAS was developed to: 

• Manage multiple executions of the user's 
choice of analysis process, facilitating its 
application to design perturbations as 
needed to map a structure's response. 

• Provide a range of integration approaches 
for estimating the structure's failure prob- 

ability given its response to statistically 
distributed controlling parameters. 

• Enable the structure's design to be opti- 
mized subject to a constraint on failure 
probability. 

The mix of required analysis tools can vary and 
it is not currently practical to hard wire all 
mixes into a single computer code. Accepting 
the need for flexibility, PDAS was designed to 
be more like a language than a program - it does 
not define an analysis but provides words and 
concepts so that the user can define the analysis. 
There are core GEAE-developed modules for 
selected functions such as spreadsheet manage- 
ment, distributional handling, finite element 
model interfacing, and life calculations. There 
are also links to external functions such as Uni- 
graphics, Patran, and ANSYS, ensuring the 
best tools can be applied to a given problem. 

PDAS will be described in detail in Section 6. 
Appendix C will provide examples of three 
PDAS programs used for the calculations sum- 
marized in Section 2.1. 



3.0   Probabilistic Fracture Mechanics 

Traditional fatigue life approaches focus on 
limited numbers of critical component loca- 
tions, estimating minimum lives at those loca- 
tions based on calculated temperatures and 
stresses, lower bounds on material fatigue 
capability based on laboratory testing of care- 
fully prepared simple geometry specimens, and 
a mechanistic model to relate the generally 
multiaxial, complex-cycle stresses of the part 
to the generally uniaxial, simple-cycle stresses 
of the specimens. Damage tolerance 
approaches (e.g. ENSIP, Reference 12) depart 
from this theme only in that they set criteria 
based on residual life from cracks assumed 
placed at the same component locations. 

The methods which are used work to yield the 
best possible accuracy at the focused critical 
locations: 3-D models are used to calibrate 
stress concentration factors. Mission simula- 
tion programs generate local temperature/ 
stress histories that may contain many thou- 
sands of partial cycles. Kt corrected missions 
enter into life algorithms where they are inte- 
grated with material data to yield a predicted 
number of cycles to failure. 

The introduction of powder metal (PM) alloys 
into disk applications led GEAE, Pratt & Whit- 
ney, SNECMA and others to question the valid- 
ity of traditional lifing methodology. Early PM 
alloys (Rene 95, Inconel 100, N'18) were rec- 
ognized to be life-limited by inherent process- 
related inclusions. Unless suppressed by a sur- 
face treatment such as shot peening, a 50 sq mil 
inclusion falling on the surface of a part at a 
high stress location significantly impacts life. 
Efforts have been made through the years to 
improve the powder process, and more recent 
alloy development programs have produced 
materials such as Rene 88 DT which are more 
tolerant of inclusions. Even so, inclusions must 
remain a concern. 

When inclusions play a dominant role, a statis- 
tical size effect is clearly implied. Large vol- 
umes are more likely to hold limiting inclusions 
than small volumes. Given this observation, 
GEAE resolved to pursue a new lifing method- 
ology with a more solidly probabilistic basis. 
The Probabilistic Fracture Mechanics (PFM) 
program MISSYDD (MISsion SYnthesis giv- 
en Defect Distribution) was begun and is now 
in its sixth generation. MISSYDD serves as a 
foundation for the PDAS development. 

3.1 Outline of the PFM Risk 
Calculation 

While many approaches can be considered for 
calculating a component's failure probability 
from its inherent inclusions, the following three 
step division of the procedure has advantages: 
1. Calculation of the probability of failure by 

given a single inclusion of a fixed size 
occurring randomly in the component. This 
probability is geometric in that it involves 
the spatial distribution of stress and temper- 
ature. In principle, each point of the model 
has a well defined life dependent on the 
precise mission conditions, geometric 
constraints and material properties in the 
vicinity of the point. Clearly, none of these 
factors are firmly fixed by design. The 
mission may be variable so that stresses and 
temperatures fluctuate randomly. Free sur- 
faces may vary within drawing tolerances. 
Material properties influencing life may 
differ from point to point and part to part. 
These factors must be recognized and, 
ideally, should be incorporated into the 
analysis. Given random placement of the 
inclusion, the probability of failure by a life 
N is the volume of material having life less 
than or equal to this N divided by the total 
volume. 



2. Calculation of the probability of failure 
given a single inclusion from a distribution 
of sizes. The geometric failure distribution 
is integrated with the relative inclusion size 
distribution. 

3. Calculation of the probability of failure 
given more than one inclusion. This is like 
flipping a coin: 

The probability of one head is 0.5. The 
probability of two heads is (0.5)2. The 
probability of n heads is (0.5)n, a very small 
number for n large. 

A component may survive a single inclu- 
sion with high probability, say 0.999999 
(since the probability that the inclusion is 
large and in the wrong place is small). But 
there are many inclusions in powder alloy 
parts, all competing for failure. The 
survival probability given 100 inclusions is 
(0.999999) 100 = 0.9999. 

If F is the failure probability given a single 
inclusion, then (1-F) is the corresponding 
survival probability. The survival probabil- 
ity given n independently competing inclu- 
sions is (1-F)n ; the failure probability is 
l_(l_F)n jhis simple expression is inte- 
grated with the probability that there are n 
inclusions to yield net failure probability. 
This last step depends on the average rate of 
occurrence (number per cubic inch) of 
inclusions in a part times the part volume. 

Summarizing the risk equations 

Let G(N, a) denote the geometric failure proba- 
bility, the probability of failure by life N given 
a single inclusion of size a. Let s(a) denote the 
probability density function of the inclusion 
size distribution. G(N, a) and s(a) are integrated 
to yield R(N), the probability of failure given a 
single inclusion, randomly sized. 

R(N) 
■/ 

G(N, a) s(a) da 

To calculate the failure probability given com- 
peting inclusions, F(N); the Poisson model for 
inclusion occurrence will be assumed: 
The probability that there are n inclusions in a 
component volume is erwX (V^)n/n! where X 
the average inclusion frequency (number per 
cubic inch) and V is the volume. 

F(N) = Prob (1 defect present - it fails by N) 

+ Prob(2 defects present - one or 
both fail by N) 

+ Prob(3 defects present - one or 
more fails by N) 

+ ... 

e-xv(XV)' 
1! 

e-w(W)2 

+ 
2! 

e-xv(XV)3 

3! 

(1 - (l-R(N))1) 

(1 - (l-R(N))2) 

(1 _ (l-R(N))3) 

+ ... 

0 

= e-xv(exv -1 - eXV(1-R(N)) + 1) 

F(N) =  1 - e-W(R(N» 

3.2 Note on the Statistical Size Effect 
The size effect concept has broader application. 
All materials initiate failure at limiting micro- 
structural features (grains, carbides, nitrides). 
The confluence of microstructure and stress is 
to some extent statistical. Disks with 80 bolt 
holes will have a lower minimum life than spec- 
imens with single bolt holes (assuming the two 
geometries can be equivalently stressed). 
Detailed studies of the size effect in wrought 
Inconel 718 have concluded that it is over- 
whelmed by non-statistical stratification of 
data between parts and between part locations 
(References 1 and 13). Statistical size effect is 
inconsequential if life distributions are narrow 
within the volumes of the stress-concentrated 
regions, but powder alloy life distributions can 
be very broad given the distributions of inclu- 
sion sizes, locations and behaviors. 

10 



4.0   Dealing with Variability: The Probabilistics Target 

Figure 6 shows the comparisons among PFM- 
predicted and observed failure distributions for 
five specimen sets: cylindrical and hourglass, 
unseeded baseline, large and small seeded ... 
all peened and all tested at the same conditions 
of strain and temperature. The comparisons 
demonstrate the capability of the PFM model 
over the range of probabilities 0.01 to 0.99 
when provided the right inputs of inclusion dis- 
tribution and behavior. It is easily accepted that 
were the rate of inclusion occurrence orders of 
magnitude lower than the selected seeding den- 
sities (more like the real world), the failure 
probabilities would be proportionately lower in 
the absence of other failure mechanisms. 

Significant efforts are being made to ensure the 
right inputs for design application of PFM. For 
example, Heavy Liquid Separation (HLS) 
analysis has been developed to quantify and 

control inclusion content. This work was pres- 
ented at the 1994 Toronto meeting of the Metal 
Powder Industries Federation and published in 
the proceedings with the vision that HLS (or 
something like it) will become an industry stan- 
dard (14). Also, an intensive seeded fatigue 
program providing a model for crack initiation 
at inclusions is ongoing. Some of the details of 
this work will be presented at the September 
1996 Seven Springs Superalloys Conference. 

Accepting that the technology is available and 
sufficiently mature to be applied to hardware, 
two challenges remain: an appropriate risk de- 
sign level must be accepted and surprises must 
be avoided. 

Conventional deterministic design methods 
yield products having nonzero risk of failure, 
but the risks are hidden. Given a design based 
on minimum properties (-3a), it is seldom 
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Figure 6.   Peened Specimens Tested at One Temperature/Strain Condition. 
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noted that failure might occur 1.35 times out of 
1000. In practice, conservatisms are usually 
compounded and safety factors applied, but 
there is always some risk, and there can be fail- 
ures. By contrast, PFM quantifies risk; risk be- 
comes a characteristic to be controlled and kept 
below an accepted level. In Reference 1, FAA 
statistics are used to support 1/1,000 or 
1/10,000 probabilities at full life as appropriate 
for fatigue failure. 

Given the right inputs, the seeded validation 
testing supports the capability of PFM to cor- 
rectly predict risk. The second challenge ad- 
dresses our ability to define the right inputs. 
Each failure distribution in Figure 7 corre- 
sponds to a perturbation in part geometry (the 
nine perturbations overlaid as shown). Design- 
ing to a low failure probability on the nominal 
curve ignores the fact that it may be the wrong 
curve for any given part. Many other factors 
can move PFM calculated failure curves and 
create similar concerns. 

An aircraft engine component design analysis 
is based on many knowns: basic geometry is 
well defined as is the envelope of speeds and 
gas temperatures defining the cycle for a given 
application. Metal stresses and temperatures 
can be calculated with reasonable precision 
using finite element and finite difference meth- 
ods. For PFM calculations, the average inclu- 
sion distribution can be determined, as can the 
average incubation behavior of the inclusions 
(cycles to crack initiation) and the average 
crack growth properties (growth from initiation 
to failure). 

But the example of Figure 7 illustrates the need 
to recognize sensitivities to deviations from 
nominal values of design parameters. The 
example (though admittedly extreme) demon- 
strates the potential impact of manufacturing 
tolerances. The effect of variations in other 
parameters may be as significant or more so: 
Actual engine usage will vary from flight to 
flight, from base to base, or from pilot to pilot. 
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Figure 7.   Predicted Failure Distributions for Nine Disk Perturbations. 
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Stresses and temperatures may be reasonably 
calculated, but not exactly (temperatures with- 
in ±25°F at steady state conditions, within 
±50°F for transients; critical material proper- 
ties can vary significantly over 50°). There is 
variability in inclusion distribution and in in- 
clusion behavior. 

There will also be surprises: deviations from 
manufacturing tolerances, unexpected applica- 
tions, analysis oversights, methodology short- 
falls, and material anomalies. 

The target in Figure 8 suggests a strategy: 

1. The Bull's-eye - Apply what we know as 
well as we know how to. PFM does provide 
a measure of product capability given 
nominal assumptions. 

2. The Middle Ring - Evaluate sensitivities to 
known deviations and bound the results. 
Assume the left-most curve in Figure 7. 

3. The Outer Ring - Back off from the 
calculations until accumulated experience 
justifies doing otherwise. Apply a safety 
factor on computed minimum life. 

The relative proportions of the target circles 
can vary as a fleet matures and as probabilistic 
methodology improves. Middle ring sensitivi- 

ties may be pushed into the bull's-eye if the 
variability can be statistically defined and prop- 
erly incorporated. The outer ring may shrink 
given experience and/or implementation of 
production controls aimed at preventing sur- 
prises. 

4.1 Example - Factoring In 
Dimensional Variability 

The risk curves in Figure 7 define a response 
surface dependent on part dimensions Xi, X2 
and X3. Assume that manufacturing deviations 
in these parameters can be modeled as random 
variables with joint density p(xi, X2, X3) = u(xi) 
v(x2) w(x3) (Figure 9). Let F(N: x\, x2, x3) 
denote the conditional probability of failure 
given geometry defined by xi, x2 and X3, and 
integrate against the joint density: 

I F(N : x„ x2, x3)p(x„ x2, x3)dx„ dx2, dx3 

This yields an average distribution, the Inte- 
grated Result indicated in Figure 10. Designing 
to this distribution captures the variability, but 
removes the arbitrary conservatism entailed in 
designing to the minimum (left-most) curve. 

The Probabilistics Target Known Sensitivities The Rest 
Basic 
Geometry 

Manufacturing 
Tolerances 

Uncaptured Deviations 

Typical 
Usage 

Mission 
Envelope 

Unexpected Application 

Representative 
Temperatures 

Representative 
Stresses 

Delta 
Temperatures 

Delta 
Stresses 

Analysis Oversights 

Methodology Shortfalls 

Boundary Condition Errors 

Average 
Flaw 
Distribution 

Lot-Tc-Lot 
Variability 

Analysis Oversights 

Methodology Shortfalls 

Average 
Incubation 

Lot-To-Lot 
Variability 

Uncaptured Deviations 

Average 
Crack Growth 

Lot-To-Lot 
Variability 

Figure 8.   Strategy for Implementation of Probablistics. 
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4.2 Example - Factoring in Variability 
in Inclusion Distribution 

As was discussed in (Reference 14), Heavy 
Liquid Separation (HLS) is a PM cleanliness 
evaluation technique which has been devel- 
oped by GE Aircraft Engines and Wyman-Gor- 
don. A high density liquid is used to float 
ceramic inclusions from a PM sample for char- 
acterization by automated SEM/EDAX analy- 
sis. The number, size distribution, and chemis- 
tries of the recovered inclusions can be used for 
statistical process control (SPC) monitoring 
and improvement of PM lot cleanliness, and as 
a quality control screen to help ensure an 
acceptable level of cleanliness for PM used in 
critical applications. 

Inclusion distributional models are core to the 
evolving risk analysis methodology. For any 
given material, MISSYDD assumes a homoge- 
neous inclusion distribution (a single distribu- 
tion which can be generically applied to all pro- 

duction lots). Sufficient data exists to demon- 
strate the inadequacy of this assumption. 

HLS analysis of a large number of powder lots 
yielded considerable scatter between samples 
(Figure 11). A conservative (middle ring) ap- 
plication of this data would use an upper bound 
distribution for PFM calculations. Design life 
would be based on the acceptable risk level 
assuming the part was manufactured from the 
dirtiest powder likely to be encountered. 

Conservatism can be reduced (movement to- 
wards the bull's-eye) if the observed scatter can 
be integrated into the risk calculation. Assume 
that lot variations can be modeled as a random 
vector x with joint density p(x). Let F(N: x) 
denote the conditional probability of failure 
given the inclusion distribution defined by x, 
and integrate against the joint density: 

I F(N : x) p(x) dx 

1. 
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.0001 
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Figure 11.   Lot-to-Lot Variability in Inclusion Distribution. 
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This would yield the desired refinement. 
Unfortunately, the parametrization is not 
available, much less the joint density p(x). 
Fortunately, it can be shown that: 

F(N : x) p(x) dx 

< 1-exp  -XV I R(N : x) p(x) dx 

= 1-exp 

H 
-XV    G(N, a) G(N, a)    sx(a) p(x) dx da 

(Jensen's Inequality for the exponential func- 
tion, Reference 15). The integral Jx(a)p(x)dx 
is an average inclusion distribution estimated 
by combining all data into a single distribution 
having density s(a) (see Figure 11). The 
inequality is rewritten: 

I F(N : x) p(x) dx 

p  -XV J < 1 -exp  -XV    G(N,a) s(a) da 

Thus, it is sometimes possible to factor in lot- 
to-lot scatter without actually quantifying it. 
Using the average distribution produces an esti- 
mate of failure probability which is conserva- 
tive, but not as conservative as would result 
from assuming a worst-case distribution. 

4.3 Example - Factoring in Variability 
in Inclusion Behavior 

The PFM risk algorithm as presented in Section 
3 assumes that the life of any given inclusion at 
any  component  location  can  be  predicted 

exactly. In reality, there is scatter about the pre- 
dicted life due to many factors including vari- 
ability in inclusion shape, variability in matrix 
properties, and variability in actual loading. 

Because this scatter has not been integrated into 
the calculations, the Figure 6 peened data pre- 
dictions capture the average behavior of the 
observed distributions but not their breadth. 
The following model is a simple correction: 

1. Assume that the scatter can be modelled by 
a distribution of life multipliers: Let \x 
denote the ratio of predicted to observed 
life for a single inclusion, and let m(u) 
denote the probability density function of 
the u, distribution. 

2. Assume also that the distribution of \i 
predominantly represents testing variabili- 
ty (i.e. specimen-to-specimen rather than 
inclusion-to-inclusion). 

The distribution of life is derived from the basic 
PFM risk algorithm as a kind of convolution: 

I [l - e-^^ m(n) du 

Figure 12 shows that a Weibull distribution can 
be found for \i which fits the predicted/ob- 
served ratios of the cylindrical large and small 
seeded data sets of Figure 6. Convolution of 
this distribution with the calculations in Figure 
6 yields better agreements between predictions 
and observations (see Figure 13). Figure 14 
shows comparisons for other data sets. Note 
that the calculations for the unpeened data sets 
in Figure 14 appear to capture the competition 
between surface and subsurface initiated fail- 
ures (surface initiated failures have shorter 
lives but occur with lower probability). 
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5.0   Statistical or Not? 

Improvements as described in the last three 
examples can provide better analysis of 
middle-ring sensitivities, but only if the sensi- 
tivities can be properly modeled statistically. 
Probabilistics are often sought as cures for all 
variability, but they are strictly useful only in 
situations where randomness is well defined. 

Probability and statistics deal with variables 
(measurable quantities) which are random for 
individual samples, but which are predictable 
(on the average) for larger samples - quantities 
for which the empirical distributions converge 
for large samples to fixed forms which may be 
parametric (binomial, normal, Weibull) or non- 
parametric. Statistical samples are generated 
under controlled conditions and analyzed to 
infer the underlying distribution; probabilistic 
theory is applied to predict the effects of the 
randomness under more complex circum- 
stances. 

Qualitatively, risk is a condition of uncertainty 
the potential result being undesirable. In 
attempting to quantify risk, probability theory 
is called on. This assumes that there is predict- 
ability even in randomness, which is sometimes 
true. We refer to physics and chemistry and the 
success of statistical and quantum mechanics, 
or to genetics and gambling where much sim- 
pler combinatoric predictions work on average. 
In these applications, populations may be 
sampled repeatedly and repeatably (the popula- 
tions are open). Their statistical distributions 
can be derived from basic principles or inferred 
by preliminary sampling, and then applied to 
predict the results of subsequent sampling. 

A population of aircraft engines is closed rather 
than open; a few thousand will be made over a 
span of several years. It is closed and probably 
not even stable. During production, design 
revisions may be made, melting and forging 

practices may be modified, subcomponent sup- 
pliers may change. Consequently, computed 
risks, while stated as probabilities, are usually 
not verifiable. A predicted 1/1,000 risk of fail- 
ure can be disputed if enough fail, but can not 
be verified, and while 1/10,000 may be lower 
risk than 1/1,000, the difference can not be 
demonstrated. Decisions are qualitative despite 
the quantitative language. 

Component integrity is dependent on many fac- 
tors, some of which are at least approximately 
statistical (inclusion distribution), but many of 
which are inherently non-statistical. For 
example, a design modification in a derivative 
engine may be mistakenly assumed benign 
based on its ancestry, and no further analysis 
performed. In another example, a stress con- 
centration may be underestimated based on an 
oversimplified textbook solution or on a poorly 
refined finite element model. While a probabil- 
istic design framework can sometimes facili- 
tate evaluation of sensitivities by quantifying 
risk as a function of the potential error, such 
errors can probably not be usefully accommo- 
dated by statistical analysis. 

Safety factors may be applied to computed 
minimum component lives upon launch of new 
designs or design revisions as a hedge against 
analysis errors and oversights. The factors may 
be essentially arbitrary, or they may be tied to 
some qualitative judgement of analysis good- 
ness or based on field inspection intervals. In 
any case they need not remain fixed. Analysis 
refinements and improvements in material 
understanding can be counted on, and while 
operating experience may uncover problems, it 
will also support a good design's fundamental 
integrity. In most cases, factors will increase 
with time. 

Probabilistics work if properly applied. They 
can produce designs which are robust against 
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failure since risks and sensitivities are quanti- 
fied. In some cases they may yield economies 
in weight or manufacturing requirements. In 
other cases weight may be added or manufac- 
turing requirements stiffened to lower risk to an 
accepted appropriate level. 

The probabilistic tools do work, but must be 
applied at a proper level. Some parameter sen- 
sitivities cannot be incorporated probabilisti- 
cally (at least not at the outset) and must be 
bounded. Some allowance must also be made 
for oversights. Thus, conservatism should not 
be abandoned, but may be reduced in time giv- 
en dedicated efforts. While it is prudent that 
caution be exercised in reducing conservatism, 
it is equally prudent to pare away unnecessary 
conservatism which wastes resources and im- 
pedes society's growth into the future. 

5.1 Application Strategies 

It is given that some components cannot be 
designed for the largest possible defect or the 
worst possible material properties, and risk 
based design provides a reasonable alternative. 
The examples of integrated risk analyses in 
Section 4 cover situations which could be dif- 
ferent. 

As demonstrated in Section 4, variability in 
part dimensions yields parts with a range of 
failure distributions, and while dimensional 
variability can only be controlled within limits, 
it can be quantified for all parts produced. Simi- 
larly, variability in inclusion distribution from 
powder lot to powder lot yields a range of fail- 
ure distributions; it cannot be controlled, but 
can be quantified within the limits of sampling 
variability. 

There is a difference between fielding 10,000 
parts, expecting (based on an estimated failure 
probability of 1/10,000) that 1 will fail, and 
fielding 10,000 parts, expecting (based on an 
inspection) that 1 particular part will fail. The 
latter would clearly be unethical. The distinc- 

tion is less clear if an inspection can quantify a 
parameter which might indicate higher risks for 
some parts and lower risks for others. 

Consider the following alternative strategies: 

• Retire parts at the 1/10,000 life for the ab- 
solute worst component where worst cov- 
ers all parameters which can be measured. 

Of course worst never really means worst. 
Worst means somewhere on the edge of a sharp- 
ly defined process window. It is tacitly assumed 
that the measurements are exact and that a point 
inside the window is always better than a point 
outside. It is also assumed, tacitly, that parts are 
rejected if they fall outside the window. 

When the assumptions are met, this middle ring 
solution of the probabilistic target has merit 
from the point of view of safety. It is wasteful, 
however, if there is a large difference between 
the worst part and one that is likely to be made. 

• Retire parts at the 1/10,000 life predicted 
by a fully integrated risk analysis. This 
yields an average 1/10,000 failure proba- 
bility, but individual parts will have risks 
higher or lower than 1/10,000. 

This second strategy may be acceptable if the 
assumptions behind the first strategy are in 
question. For example, HLS is useful as a quali- 
ty control tool. It can detect trends, and can 
detect a process gone out of control. Given 
samples from many powder lots, it also pro- 
vides an average picture of the inclusion dis- 
tribution which can be used for PFM calcula- 
tions. However, HLS cannot be used to collect 
enough data for individual lots to confidently 
define a window; the measurement is not exact. 
(Sampling variability is demonstrated in Ap- 
pendix B.) 

This second strategy may be acceptable if it is 
judged that there is adequate conservatism built 
elsewhere into the analysis. For example, it was 
demonstrated in Section 4.2 that applying the 
full breadth of the average inclusion distribu- 
tion overestimates failure probability. 
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This second strategy may be essential to man- 
aging a field problem. For example: A fillet 
radius is found to be a critical dimension only 
after several hundred engines have been field- 
ed. A badly undersized radius would be ex- 
pected to lead to cracking long before the first 
planned shop visit. Earlier inspections may be 
needed to assure that offending parts are weed- 
ed out for rework. Assuming that all fillet radii 
are undersized would call for immediate 
grounding of the fleet. Based on a measured 
distribution of fillet radii, an inspection interval 
may be set which holds the risk below 1/10,000. 

• Retire parts at the 1/10,000 life predicted 
by a fully integrated risk analysis, but re- 
ject parts having failure probabilities ex- 
ceeding 1/10,000 at this life. 

This third strategy is less conservative than the 

first, but addresses a concern with the second 
strategy by holding risk at an acceptable level 
for all components. Given a robust design, very 
few parts will be rejected. 

•    Retire parts at individually calculated 
1/10,000 life limits. 

This strategy seems to be optimal. It holds risk 
at a uniform level for all components, and also 
utilizes full part life. 

It will be argued that it is too complicated, but 
parts are already tracked by cycles and hours 
flown. Adding another number onto a spread- 
sheet is not a major burden and seems com- 
pletely consistent with the US AF interest in life 
monitoring. Balancing engines so that tear- 
downs are efficiently managed will be neces- 
sary, but the net cost savings must be tremen- 
dous if there are large part-to-part differences. 
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6.0   PDAS Template Programming 

MISSYDD was developed to perform only very specific analysis functions. Other programs were 
needed for concurrent tasks of data analysis, algebraic manipulations and simulation studies. While 
commercially available packages were sometimes available, they were often found wanting, and 
special programming had to be developed. 
Local programs are generally written in Fortran. Large portions of the programs are generally very 
similar from one to another. There may be blocks of input/output code, a sorting routine, random 
number generators, and so on. Much of the overlap can be eliminated by linking programs with 
libraries of standard subroutines; this requires careful attention to assure that calling sequences be 
exactly right. Arrays must be dimensioned, files opened and closed. Often the lines dedicated to 
actual computations are outnumbered many times by the wrapping. 

Two developments at GEAE suggested an alternative: 

1. The System for Integrated Engineering Structural and Thermal Analysis (SIESTA) develop- 
ment team refined the concept of keyword-defined input and output. 

2 Greg Blanc developed an expression evaluator package which interprets Fortran-like algebraic 
expressions Using these concepts (and many of the routines) as a starting point, a new 
programming language has been developed which greatly simplifies many analysis tasks. 
Simple commands replace blocks of code. For example: 

table  1   input 
x.dat 

causes the file x.dat to be opened and the keyword-defined data to be entered into a table identified 

as 1. 
table   1   set  y  =   EXP(LOG(X)   +   SIN(X**2)) 

creates a y^olumn in table 1 by transforming the x-column by the expression following the equal 

sign. 
distribution make Y   (table)   1 x 

produces an empirical distribution, labeled Y, from the x-column data in table 1. 

x =   (random)   Y 

assigns to parameter x a random value from the Y-distribution. 

Other commands enable manipulation of a MISSYDD database. Models, missions, and computa- 
tions can be defined and operated on as directed by simple template programs. 

External functions are also significantly assisted by GEAE's SIESTA software. Component designs 
generally require many analysis steps for accurate deterministic predictions: parametric geometry 
definition finite element thermal/stress/displacement analysis (both elastic and plastic (up to 
burst)), fatigue, and fracture mechanics calculations. The best deterministic tools are required to 
maximize accuracy in a probabilistic analysis. 

SIESTA provides unified access to a range of disciplines. For example, ANSYS may be chosen for 
geometry definition and thermal/stress/displacement analysis, or it may be decided to call Unigraph- 



ics and Patran for modeling and meshing followed by ANSYS for the solution. This flexibility 
allows concentration on the leading edge of development needs. 

The following is a brief summary of the template language. 

6.1 Keywords 
Keywords control program flow. They can be entered in any case, and only the first four characters 
are significant (TABLE, table, Table, TABL, tabl, Tabl are all equivalent). The following 
are the supported primary keys: 

TABL Table Manipulation 

EXPR Expression Definition 

ALGE Algebraic Operations 

DIST Distribution Handling 

REGR Regression Functions 

LOOP Loops 

OPTI Optimization 

PLOT Plotting 

MODL Model Library 

MSSN Mission Library 

COMP Computation Library 

LIFE Life Calculations 

RISK Risk Calculations 

Entering a primary keyword changes control to its menu of secondary keywords. Secondary key- 
words can follow on the same line or on following lines. For example: 

table 1 input 
x.dat 
table 1 set y = EXP(LOG(X) + SIN(X**2)) 

is equivalent to 

table 1 
input 
x.dat 
set y = EXP(LOG(X) + SIN(X**2)) 

A few secondary keywords lead to menus of tertiary keywords. 
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6.2 Table Manipulation 
A table is an array of numbers. Each column is a parameter. The rows are individual values. 

Example: 

Row No. X Y Z 

1 2 1 21 

2 1 2 12 

3 2 2 22 

4 2 1 21 

5 1 1 11 

6 2 1 21 

7 1 1 11 

8 1 2 12 

9 2 2 22 

Tables are identified by integer labels from 1 to 100 specified by the user after the primary keyword. 

For example: 

table  10 
Subsequent commands will look for direction from the TABLE menu and will address table 10 until 
the next occurrence of a primary key. 
Tables may be referenced to define digitized functions or parameter distributions, and as data sets 
for regression analysis or plotting functions. 
Tables may be defined by ASCII files or built by the template program. Columns may be defined 
or redefined by functional transformations. For example: 

set  U  =   exp(X  +  Y  +   Z) 
Column U is defined by the expression to the right of the equal sign where X, Y and Z are constants 

or other table columns. 
Rows may be flagged on or off for subsequent operations based on general lists of conditions. For 

example: 
flag X   .gt.   100 X   .le.   Y   .le.   Z 

where X, Y and Z are constants or table columns. Rows satisfying the multiple inequalities are turned 

on. 
Tables may be sorted or grouped by column values. Tables (or specified table columns) may be 

output to ASCII files. 

6.3 Expression Definition 
Expression evaluation routines have been incorporated into PDAS, enabling the application of 
algebraic functions for a variety of purposes. Digitized functions can also be defined with up to three 

independent variables. 
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Expressions play a part in parameter definitions, as integrands, as constraints and as regression 
models. Incubation in the life calculation module is also defined by expressions in terms of stress, 
temperature, inclusion area and inclusion depth. In the future it is planned to enable user definition 
of other material properties by expressions (e.g. crack growth rate curves, probability of detection 
curves, inclusion distributions). 

The following is the basic format used for expression definition: 

EXPR   {expression  ID} -.Expression 

EXPR is the primary keyword which initiates definition. The ID is an optional four character 
case-insensitive label. The colon points to the beginning of the expression. If the ID is included, 
the expression is stored in an expression table initialized at the start of template execution (up to 100 
expressions can be so entered). If the ID is omitted, the expression is processed and held as the 
current expression for subsequent operations. 

Expression is either an algebraic function (in capitals) or a digitized function defined by a 
previously input file. The rules for definition follow. 

6.3.1 Algebraic Functions 
Expressi on has the form of a Fortran expression using the operator set {+, -, *, / and **} and 
the function set {sin, as in, cos, acos, tan, atan, cosh, sinh, tanh, 
log, loglO, exp, sqrt, abs, unsf} (unsf is the unit step function: unsf (x) = 0 
forx< 0,unsf (x) =lforx>0). 

Parentheses within an expression are used to determine precedence of operation. The parentheses 
in the expression must balance - there must be as many right parentheses as left parentheses. 

The equality symbol = is used to define relations to be fit in regression analyses. 

6.3.2 Digitized Functions 

Expression has the form: 

(DIG)    (TABLE)    {ID}   {dep.   var}    [format]    {ind.   var 1}    [format]    ... 

Up to three independent variables can be considered. 

[format] is optional. The following are recognized: (LIN), (LOG), (POW) and (POL) .The 
default is (LIN). 

(LIN)   treats the variable as linear in the interpolation, (LOG) as logarithmic. 

(POL) treats the variable as an angle in radians for a polar interpolation. 

(PWR) does a power function interpolation (i.e. dep  =  a*ind**b). 

Only (LIN) and (LOG) are applicable to the dependent variable. 

The interpolation begins with the last independent variable. Independent variables are assumed to 
be layered in the following sense: Each combination of the first p variables must be adequately 
represented in the p+1 variable to enable interpolation. 
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Example: 

table  1  input 

inputs the following data file: 

RAVG 

169.4 
94.7 
55.8 
48.1 
44.3 

109 
87.2 
57.3 
50.9 
45.1 

77.9 
76.1 
54.3 
46.7 
43.4 

41 
31.8 
27.9 
26.9 
33.8 

16.6 
15.6 
15.3 
14.9 
19.1 

12.2 
11.5 
10.8 
11.3 
14.4 

8.9 
7.8 
7.4 
7.4 
11 

4.1 
3.3 
3.1 
3 

4.8 

RMIN 

165.5 
75.7 
44.6 
38.5 
35.4 

103.6 
69.8 
45.9 
40.7 
36.1 

70.3 
60.9 
43.4 
37.3 
34.7 

33.8 
25.4 
22.3 
21.5 
27.1 

13.8 
12.5 
12.2 
11.9 
15.3 

10.5 
9.2 
8.9 
9 

11.5 

7.2 
6.3 
5.9 
5.9 
8.8 

3 
2.6 
2.4 
2.4 
3.8 

THETA TEMP 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

0 
0.24498 
0.59031 
0.7854 
1.5708 

1200 
1200 
1200 
1200 
1200 

1400 
1400 
1400 
1400 
1400 

1600 
1600 
1600 
1600 
1600 

1800 
1800 
1800 
1800 
1800 

2000 
2000 
2000 
2000 
2000 

2050 
2050 
2050 
2050 
2050 

2100 
2100 
2100 
2100 
2100 

2200 
2200 
2200 
2200 
2200 
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EXPR  EX1   :    (DIG)     (TABLE)    1   RMIN  TH   (POLAR)    TEMP 

When evaluated, new values of RMIN are calculated for each TH by linearly 
interpolating with respect to TEMP. The new values of RMIN are then polar 
interpolated with respect to TH. 

6.3.3 Equalities 
Equalities have the following forms: 

A  =   value 

A = (EXP) {expression  ID} 

A = Expression 

Initialization. 

Expression evaluation. 

Expression evaluation. 

Examples: 

A  =   1 

expr  A   :   X  +   Y   +   Z 

A  =    (exp)   A 

A  =  X  +  Y   +   Z 

A  =   (dig)    (table)   1  Y X   (pol) 

A  =    (MIN)    list 

A  =    (MAX)    list 

List minimum 

List maximum 

Examples: 

A  =   (min)   X Y   Z 

A  =   (max)   A  1 

A = (TABLE) ID (MIN) column 

A = (TABLE) ID (MAX) column 

A  =   (TABLE)    ID   (SUM)    column 

Column minimum 

Column maximum 

Column sum 
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Examples 

X Y Z 

2 1 21 

1 2 12 

2 2 22 

2 1. 21 

1 1 11 

2 1 21 

1 1 11 

1 2 12 

2 2 22 

A = (table) 1 (min) X 

yields: 1 

A = (table) 1 (max) Y 

yields: 2 

A = (table) 1 (sum) Z 

yields: 153 

A = (DER) {expression  ID}  WRT list 

A = (INT) {expression  ID}  WRT list 

A = (RAN) parameter 

A =   (RAN)(EXP)    {expression  ID} 

A  =   (MODL)   parameter 

A  =   (LIF) 

A  =   (QUA)   quantile 

Expression derivative with 
respect to the list variables. 

Expression integral with respect 
to the list variables. 

Random value from a previously 
entered parameter distribution. 

Random expression evaluation, 
some or all of the expression 
parameters being random 
variables. 

Model data such as volumes or 
surface areas, stress components, 
or temperatures at specific 
locations or averaged over 
model sections. 

Life calculation at specific model 
locations. 

Survival or failure probability 
quantile following risk 
calculations 
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6.4 Algebraic Operations 

Expressions may be rearranged symbolically. 

Examples: 

expr aaaa : X*(X*(X*(X*(X+l)+1)+1)+1)+1 

algebra prep aaaa 

algebra write aaaa 

produces: 

X*X*X*X*X+X*X*X*X*1+X*X*X*1+X*X*1+X*1+1 

expr bbbb : exp((sin(A) + B + C)*(sin(A) + B + C)) 

algebra prep bbbb 

algebra write bbbb 

produces: 

exp((sin(A)*sin(A)+sin(A)*B+sin(A)*C+B*sin(A)+B*B+B*C   & 

+C*sin(A)+C*B+C*C)) 

(This operation is performed internally prior to an integration of an algebraic function.) 

Expression variables may be replaced with current parameter values. 

Example: 

expr cccc : A*(B + SIN(C + D)) 

B = 11 

D = 22 

algebra replace B D 

algebra write cccc 
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I produces: 

| A*(11.0000 000+SIN(C+22.00 00000)) 

Limited matrix operations may be performed (currently, only symmetric matrix diagonalization). 
Let X be the matrix key an n be the matrix order. The matrix is defined by the n2 parameters: 

Xll • • •  Xln 

X21  X22 

X31  X32  X33 

Xnl      Xn2      Xn3       . . .       Xnn 
The current values of the super-diagonal elements determine the symmetric matrix to be diagonal- 
ized. The eigenvalues determined by the operation are placed in the parameters EIG1, EIG2,..., 
EIGn. The eigenvectors are placed in the column parameters XIi, X2i, X3i, ..., Xni (i from 1 

ton). 

6.5 Distribution Handling 
A good many PDAS operations involve statistical distributions of one type or another, inclusion 
distributions feed into risk calculations. Functions are integrated against various parameter distribu- 
tions. 
Distributions are stored in one of three digitized formats (X is a random variable): 

/.   Cumulative Format 
As ordered pairs (x, C(x)) where C(x) = Probability(X<x). 

2. Exceedance Format 
As ordered pairs (x, E(x)) where E(x) = Probability(X>x). 

3. Density Format 
As ordered pairs (x, r(x)) where r(x) = dC(x)/dx = -dE(x)/dx. 

x 

C(x) =     r(u) du =     r(u) 

—OO 

oo 

E(x) =     r(u) du 

x 

There are also specialized statistical models: The Poisson or Dirtiness models for material inclusion 
distribution are examples (Reference 14). 

6.6 Regression Functions 
Parametric models defined by Fortran-like equations can be least squares fit to data A model is 
referenced by its expression ID and the data held in a table. The regression can include all active rows 
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of the table or it can proceed iteratively over groups of rows. The resulting parameter estimates can 
be written to a table. 

| Example: (Reference 16.) 

| The data was generated from the equation: 
y = 1.0 - x + 0.2*(x**2) and random errors added: 

X Y 

0.050 0.956 

0.110 0.890 

0.150 0.832 

0.310 0.717 

0.460 0.571 

0.520 0.539 

0.700 0.378 

0.740 0.370 

0.820 0.306 

0.980 0.242 

1.170 0.104 

expr aaaa : y = a + b*x + c*(x**2) 

regr fit (expr) aaaa to 1 

yields: 

A 
B 
C 

.9979684E+00 
-.1018042E+01 
.2246821E+00 

6.7 Loops 
One of the most powerful features of any programming language is the loop, the ability to repeat 
the same sequence of operations a specified number of times. Loops (and nested loops) can be 
incorporated into PDAS templates in a number of ways: 

Programs can loop over a numerical range. 

|   Example: 

| loop from 1 to 10 by 0.5 

| Executes the loop for the following values of a counter: 
1, 1.5, 2, 2.5, ..., 10. 
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Programs can loop over the active rows of a table. 

| Example: 

| loop over (table) 1 
|   Executes  the  loop once  for each active row of  table  1. 

Programs can loop until a general list of conditions is met. 

|   Example: 

|   loop until  U   .le.   2    (expr)   A   .ge.    (expr)   B 

|   Executes  the  loop until  the parameter U is  less  than or 
equal  to  2  and expression A is  greater  than or  equal  to 
expression B. 

Programs can loop while a general list of conditions is met. 

|   Example: 

|   loop  if U   .le.   2   (expr)   A   .ge.    (expr)   B 

Executes the loop if the parameter U is less than or equal to 2 and expression A is greater than or 

equal to expression B. 
While template loops are useful, it must be emphasized that they are not efficiently compiled. PDAS 
cycles through loop blocks interpreting and executing the instructions one by one. While working 
analyses have been made with millions of loop iterations, they can take days to run. PDAS template 
programming is a good tool for many simple everyday applications, for some complex once-only 
analyses and for general development prototyping. It can not compete with dedicated programs 
targeting single tasks. 

6.8 Optimization 
A flexible optimization module was developed based on commercially available ADS and IMSL 
algorithms (References 17-19). Definitions of constraints and bounds can be made with greater 
freedom than allowed by the conventions of either commercial package. 

Secondary Keys: 

INIT Initializes an optimization. 
ALGO Specifies the algorithm: ADS (the default) or IMSL. The ADS selection allows optional 

specification of strategy, optimizer, one dimensional search and print options as controlled 
by the respective secondary modifiers ISTRAT, IOPT, IONED and IPRINT as described 
in the ADS user manual. 

Usage: ALGO ADS ISTR option  IOPT option  IONE option  IPRI option 

or:   ALGO IMSL 

Secondary Modifiers: 

ISTR Strategy. Default is 8 - Sequential Quadratic Programming. 

IOPT Optimizer. Default is 5 — Modified Method of Feasible Directions for constrained 
minimization. 
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X .EQ 

X .LE 

X .LT 

X .GT 

X   .GE. 

IONE One dimensional search. Default is 7 - Determination of bounds followed by polyno- 
mial interpolation. 

IPRI Print control. Default is 0 - No output printed. (Also recommended is 3120.) 

MINI  Specifies minimization 

MAXI  Specifies maximization. 

Usage: MINI/MAXI (EXPR) {Expression ID} WRT list 

CONS  Constraint specification. 

Usage: CONS constrainti   constraint2   ... 

The constraints have the forms: 

X  = Y 

Y 

Y 

Y 

Y 

Y 

where X and Y are constants, parameters or expressions (identified by the keyword (EXPR)). 

Examples: 

constraint u .le. 2 

constraint u .le. v 

constraint (expr) a .ge. 0 

constraint (expr)a . ge. (expr)b 

Note that . LE. and . LT. are both interpreted as . LE. and that . GE. and . GT. are both 
interpreted as . GE. 

Note also that multiple constraints may be combined in a single string. 

Example: 

constraint   (expr)   a   .ge.   0 

constraint   (expr)b   .ge.    (expr)a 

can be  rewritten as: 

constraint   (expr)   b   .ge.    (expr)   a   .ge.   0 

BOUN Boundary specification. 

Usage: BOUN boundi  bound.2 ■ . . 

The bounds have the forms: 

X   =   Y 
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X .EQ. Y 

X .LE. Y 

X .LT. Y 

X .GT. Y 

X .GE. Y 
where X and Y are constants, parameters or expressions (identified by the keyword (EXPR)). 

Examples: 

bound u .le. 2 

bound u .le. v 

bound (expr) a .ge. 0 

bound   (expr)   a   .ge.    (expr)   b 

Note that .LE. and .LT. are both interpreted as .LE. and that .GE. and .GT. are both 

interpreted as . GE. 
Note also that multiple bounds may be combined in a single string. 

Example: 

bound   (expr)   a   .ge.   0 

bound   (expr)   b   .ge.    (expr)   a 

can be rewritten as: 

EXEC 

bound   (expr)   b   .ge.    (expr)   a   .ge.   0 

Executes the optimization. 

Example (ADS test case): 

expr a : 2*sqrt(2)*X + Y 

expr b : (2*X + sqrt(2)*Y)/ (2*X*(X + sqrt(2)*Y)) 

expr c : 1/(2*(X + sqrt(2)*Y)) 

X = 1 

Y = 1 
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opti init 

opti algo ads istrat 0 iopt 5 ioned 7 

minimize (expr) a wrt x y 

constraint (expr) b .le. 1 

constraint (expr) c .le. 1 

bound 0.01 .le. x .le. Ie20 

bound 0.01 .le. y .le. Ie20 

execute 

A = (expr) a 

B = (expr) b 

C = (expr) c 

display X Y 

display ABC 

The results follow: 

X : .7826923E+00 Y : .4152020E+00 

A : .2628990E+01 B : .1003817E+01 C : .3649964E+00 

6.8.1 Optimization Notes 

The gradient based algorithms called by this optimization module are reasonably robust when the 
functions being minimized or maximized and the imposed constraints are algebraic expressions, but 
problems can arise when the functions and constraints are generated by more complex analyses. 
Consider, for example, the following sequence of steps: 

1) Part geometry defined by ANSYS for parameter vector (oco, ßo> Yo)- 

2) Geometry meshed in ANSYS and thermal/stress analysis executed 

3) Volume Vo calculated based on Step 2 

4) Probabilistic fracture mechanics calculation set up and executed based on Step 2 

5) Life L0 corresponding to a 0.001 failure probability calculated based on Step 4 

6) Part geometry defined by ANSYS for perturbed parameter vector (cci, ßo, To)- 

7) Steps 1 through 5 repeated for new geometry yielding volume Vj and life Li. 
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8) Partial derivative estimated: 3(V, L)/3a = (Vi - V0, Li - L0)/(ai - ao) 

9) Steps repeated as necessary to estimate 3(V, L)/3ß and 3(V, L)/3y. 

The first problem concerns the estimation of the partials of V. The volume calculations for small 
perturbations of a model geometry can be compromised by differences in the automatically gener- 
ated meshes. A small change in parameter a may yield a larger part volume in principle, but the 
differences in meshing between the two perturbations may yield a smaller estimated part volume. 
In this case, the estimate of 3V/3a would have the wrong sign. While this can be overcome by 
iterative mesh refinement, doing so adds significant computational overhead. 

The second problem affects the estimation of the partials of L and is more subtle. There is an element 
of statistical sampling in the probabilistic fracture mechanics calculations of Step 4. Sampling 
variations can overwhelm theoretical differences in failure probability between close geometric 
perturbations which in turn affects the estimate of Li - L0. Again, brute force can be applied to 
overcome this problem: Convergence can be approached by increasing sampling in the relevant 
Monte Carlo algorithm. The penalty is longer execution time. 

The following solution was felt to be better: 

• A small region about the initial guess is defined. V and L are calculated at design points within 
and on the boundary of the region 

• Local response surfaces V(a, ß, y) and L(a, ß, y) are fit to the calculations 

• V is minimized in the region subject to the constraint that L remain above a specified value 

• The solution defines a new local region, and the process continues until a convergence criterion 
is satisfied 

This approach relies on larger perturbations in model geometry which are designed to result in larger 
(and less easily masked) differences in V and L; it also tends to average out the noise inherent in the 
meshing and lifing operations. Moreover, our approach for integrating geometric (and other) vari- 
ability requires response surface modelling of risk and so benefits from the intermediate calcula- 
tions. 

6.9 Plotting 
PDAS links into a powerful keyword-driven plotting library developed as part of SIESTA. Blocks 
of plotting commands are embedded into template programs by the PLOT primary keyword. An 
added PDAS capability: Lines can be defined by pointing to table columns. 

| Example: 

I 
| tdat (table) 10 X Y Z 

I 
| line nlin 1 Y X 

| line nlin 2 Z X 
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I   Produces two lines, one determined by the points (Xj, Yj) defined by the the 
|   X and Y columns of table 10, the second by the points (Xj, Zj) defined by 
j   the X and Z columns. If TABL FLAG is called prior to TDAT, only active rows 

|   of the table are considered. 

6.10 Model, Mission and Calculation Libraries 
Engines are broken down to components; components may be modeled in pieces - axisymmetric 
shells and quads for disk bores, webs, flanges, etc.; plane stress, plane strain quads or 3-D bricks 
for stress concentrated details such as bolt holes and dovetail slots. Each model may have several 
relevant missions (Air Combat, Air to Surface). And each mission may require more than one life 
calculation (multiple material assignments, differing sets of calculation points). 

MISSYDD organizes models, missions and calculations, as well as material data, within a flexible 
database architecture. The program is driven by menus which are closely tied to the database index, 
and these menus are echoed by PDAS template commands. 

There are many menu items, and many possible paths through an analysis. There are, however, eight 
basic steps: 

1. Create a material library 

- Incubation models 

- Fracture mechanics constants 

- Inclusion distributions 

2. Assemble a model 

- Geometric interfacing via SIESTA 

- Stress/thermal analysis interfacing via SIESTA 

- Material data assignments 

- Subsets 

3. Define a mission 

- Load cases sequences 

- Scaled sequences 

- Superpositions 

4. Initialize a computation 

- Material data assignments 

- Subsets 

5. Initialize a life calculation 

- Incubation and fracture mechanics options 

- Crack area selection 

6. Calculate fracture mechanics lives 
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7. Compute risk estimates 
- Fracture mechanics calculations  and elemental volumes yield geometric failure 

distributions 

- Integrated with assigned defect distributions 

- Multiple model/mission/computations combined 

8. Output 
- Elemental mission stresses/temperatures 

- Fracture mechanics lives 

- Risk estimates 

6.11  General Commands 

SUBM Submits user entered Unix commands. 

Usage: SUBM 
command 
command 
command 

DONE 

DISP Displays current values of specified parameters. 

Usage: DISP parameter parameter parameter  ... 

GLOB Sets global options: 

QUIE Suppresses echoing of template. 

ECHO Enables echoing of template. 

(LIF Sets the argument list for life calculations. 

EDIT Edits a file, changing lines of the form: 

parameter = 

to: 

parameter =  current  value 

Usage: EDIT 
filename 

WAIT (Followed by FILE) Holds template execution until a specified file appears. 

Usage: WAIT FILE 
filename 
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7.0   Response Surfaces 

Overlaid in Figure 7 are the failure distributions 
for nine design perturbations of a seeded model 
disk geometry. The significance is that these 
analyses (including geometry definition, finite 
element stress analysis, mission definition, 
property assignments, and probabilistic frac- 
ture mechanics analysis) were generated with a 
single PDAS template. 

Summarizing: 

• A response surface is defined to be a set of 
analysis nodes (geometry, thermal, stress, 
...). Each node is tied to a vector of 
parameters (part dimensions, rotor speeds, 
...), the variables of the analyses. Typically 
a response node involves a model (the 
subject), a mission (the action), and a 
computation (the result). 

• A response surface is created by a template 
which is a set of keyword commands such 
as MODL INIT for Model Initialize, MSSN 
COPY for Mission Copy or RISK EXEC 
for Risk Execute. There are currently more 
than 200 distinct commands referring spe- 
cifically to PDAS functions which can be 
used to build a template in addition to any 
other system recognized commands (Unix 
or program executables). 

• The first step in execution generates copies 
of a master template, one for each response 
surface node included in the current run. 
Each copy is edited to name certain node- 
unique entries. For example, a parameter 
file (named diskbase.prm) used by 
ANSYS to define model geometry is co- 
pied into node-named files (diskl. prm, 
disk2 .prm, disk3 .prm, ...). 

• PDAS cycles through each template copy, 
executing commands one at a time. If there 
is a hold up at some line, the program moves 
to the next node template. If all nodes are 

held up, the program goes to sleep. After 
predetermined length of time, it wakes up 
to check whether execution can resume. 

• For example, the ANSYS parameter file 
diskl. prm is edited to assign parameter 
values (part dimensions, loading condi- 
tions). The geometry definition and finite 
element job is submitted via a distributed 
processing scheduler. At the end of the 
ANSYS execution, SIESTA functions are 
called to post-process the output file to 
create a SIESTA Random Data Base 
(RDB). PDAS looks for the node-named 
RDB files (diskl. 3 7 and diskl .3 8). 
Since the ANSYS job was just submitted, 
they will not be found, and PDAS proceeds 
onto the next node, editing disk2 .prm, 
and so on. 

• When diskl. 3 7 and diskl. 3 8 do 
show up, PDAS copies model, mission and 
computation formats, creating new MIS- 
SYDD database entries for response node 
1. The new model entry references the RDB 
files for geometry information; it includes 
all required elemental material property 
assignments (incubation, fracture mechan- 
ics and inclusion distribution data). The 
new mission entry also references the RDB 
files; the mission is defined as a scaled 
sequence of load cases or superpositions of 
load cases. The computation entry includes 
specification of incubation and fracture 
mechanics options (e.g. gradients vs. no- 
gradients) and requested inclusion sizes. 

• PDAS next performs fracture mechanics 
calculations yielding the life response of 
the model as a function of crack size, and 
integrates this response with the inclusion 
distribution to produce one of the failure 
distributions shown in Figure 7. 
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The PDAS architecture enables control of an the templates (computation definition must fol- 
enormous array of computations (it would have low mission definition, which must follow 
been as easy to execute 90 response surface model definition), there is great freedom in 
nodes as it was to execute 9). While simple terms of organizing both internal and external 
rules of logic must be obeyed in constructing program functions. 
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Appendix A 

The following is the current Statement of Work 
for USAF Contract F33615-90-C-2070. 

1.0 Introduction 

The Integrated High Performance Turbine En- 
gine Technology (IHPTET) Initiative has set 
the goal of doubling the performance of gas 
turbine engines by the year 2000. Achievement 
of this goal will place new demands on existing 
materials and will require the use of advanced 
material systems such as intermetallics and 
composites. Conventional, deterministic 
design methods are inherently conservative, 
and cannot be readily applied to composite 
material systems. Probabilistic design method- 
ology offers a method of analyzing the interac- 
tion of the statistical distribution of design 
parameters. This reduces the conservatism of 
the design to a known, acceptable level, and 
gives the ability to deal with the complex inter- 
actions in composite material systems. This 
program will develop, validate and apply a pro- 
babilistic design system. 

2.0 Scope 

This program will consist of 6 phases. In Phase 
I, design and operating data will be collected 
and analyzed to form the basis of later work. In 
Phase II, the probabilistic design system will be 
developed, and in Phase III, the system will be 
validated through testing. Phase IV will apply 
the design system to a component which will be 
tested in Phase V. Finally, in Phase VI, the 
future application of the probabilistic design 
method will be explored, with particular refer- 
ence to composite material systems. 

3.0 Background 

Conventional design systems are based on a 
deterministic approach, where a single value is 

assumed for each design factor. Safety is en- 
sured by applying an arbitrary safety factor, or 
worst-case assumption. When several safety 
factors are combined in a design, the end result 
may be a very safe, but very conservative 
design. Achievement of IHPTET goals will 
require the use of new material systems and 
design concepts where it will be very difficult 
to determine satisfactory single values for de- 
sign and safety factors. An alternative design 
system which has been developing in recent 
years is the probabilistic approach. In this ap- 
proach, instead of single values, the statistical 
distributions of design factors are considered. 
The interaction of the distributions is analyzed, 
to predict an overall distribution of the life, or 
strength, of the total design. From the analysis, 
operating limitations or component life can be 
identified for a chosen probability of success. 
The main resultant benefits are weight reduc- 
tion, through reduced design conservatism, and 
improved safety, through better definition of 
the probability of failure. The method can also 
be used to analyze an existing design to 
examine its sensitivity to the variability of 
influential factors. 

4.0 Technical Requirements 

The Contractor shall furnish all manpower, 
facilities and equipment to conduct the pro- 
gram. The Contractor shall exercise adminis- 
trative and financial management functions 
during the course of this effort, including: 
scheduling of activities and milestones; 
describing status; outlining Contractor activity 
and progress towards accomplishment of 
objectives; planning, forecasting and making 
recommendations on funding and funding 
changes; program planning; describing in de- 
tail the overall results of the effort; and docu- 
menting any new technological breakthroughs 
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(CDRL Sequence No. 1, 2, 3, 5, 7, 8, 9). The 
program shall be conducted in 6 phases: 

4.1 Phase I - Data Acquisition 

In this phase, the Contractor shall collect, re- 
view and analyze data on rotor design, opera- 
tion and failure, to provide a basis for the later 
phases of the program. Operating and failure 
data relating to compressor and turbine rotor 
disks shall be collected from published reports, 
laboratory experience, engine and component 
test results, and from field operations. The Con- 
tractor shall review and analyze the data to 
identify the factors which influence the 
strength and life of rotor disks and the variabili- 
ty of the influential factors. The failure modes 
of the disks shall also be determined. 

4.1.1 Data Acquisition 

The Contractor shall collect relevant data from 
laboratory, spin pit, test engine and field experi- 
ence for evaluation and analysis. The Contrac- 
tor shall compile the data from the Contractor's 
data bases, from available engine overhaul re- 
cords, published reports, and other sources. 

4.1.2 Correlation of Failure 
Experience 

The Contractor shall identify the loadings, tem- 
peratures, and gradients that influence the 
structural longevity of turbine and compressor 
rotors. The Contractor shall further identify and 
quantify the probabilistic uncertainties 
associated with these variables. Potential fail- 
ure modes shall also be identified. 

4.1.3 Evaluation of Loads and 
Temperatures 

The Contractor shall identify the loadings, tem- 
peratures, and gradients that influence the 
structural longevity of turbine and compressor 
rotors. The Contractor shall further identify and 

quantify the probabilistic uncertainties 
associated with these variables. Potential fail- 
ure modes shall also be identified. 

4.1.4 Probabilistic Rotor Design 
System Parameters 

The Contractor shall identify the life-limiting 
parameters that place a structure at risk from the 
potential failure modes identified in Paragraph 
4.1.3. The probabilistic influence of other risk 
concerns, such as manufacturing tolerances, 
imperfect non-destructive evaluation, and mis- 
sion variability shall also be considered. The 
Contractor shall formulate an algorithmic ar- 
chitecture that will permit assessment of the 
overall probability of failure from competing 
failure modes, considering at least the primary, 
secondary, and tertiary threats. 

4.1.5 Development of Acceptable 
Risk Criteria 

The Contractor shall review available failure 
data. Data shall be sorted by failure mode at the 
component level whenever possible to identify 
specific trends in failure risk levels. Analytical 
trade studies shall be conducted using probabil- 
istic methods to quantify actual failure risk lev- 
els for various peacetime and wartime scenar- 
ios. Study results shall be correlated to actual 
field experience whenever possible. The Con- 
tractor shall survey Government and industry 
sources to help define acceptable risk criteria 
based on current experience and on the results 
generated by the studies above. The results of 
Phase I shall be reviewed in an oral presentation 
to the Air Force (CDRL Sequence No. 4). 

4.1.6 The Contractor shall obtain writ- 
ten approval from the Contracting Officer be- 
fore proceeding with Phase II. 

4.2 Phase II - Method Development 

In this phase the Contractor shall review its 
existing probabilistic design methods and de- 
velop them as required for application to com- 
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pressor and turbine rotor disks. Models shall be 
selected or developed for all significant failure 
modes, including cyclic fatigue, fracture, burst, 
creep, vibration and growth. The models shall 
address the statistical variations of influential 
design factors, including mission profiles, ma- 
terial properties, inspection reliability and 
manufacturing capability. The Contractor shall 
also select and study an alternative model pro- 
gram, such as NESSUS (Numerical Evaluation 
of Stochastic Structures Under Stress), which 
shall be used later for comparison. 

4.2.1 Failure Models Development 

The Contractor shall assess existing probabilis- 
tic life cyclic fatigue and fracture models and 
modify them based on the results of Phase 1. 
The Contractor shall modify or develop proba- 
bilistic models for burst, creep, vibration, and 
growth failure modes. 

4.2.2 Statistical Analysis Models 

The Contractor shall construct the statistical 
models required as input to the analysis devel- 
oped in task 4.2.1. These models shall include 
statistical variations of life drivers, regression 
models, and other analytical models. Statistical 
variation of life drivers shall include variations 
in the operating environment as well as the un- 
certainty in engineering analyses and models. 

4.2.3 Methodology Description 

The Contractor shall prepare a description of 
the analysis techniques contained in the code 
and the assumptions used or implicit in the 
methodology. At the completion of Phase II, 
the Contractor shall make an oral presentation 
to the Air Force (CDRL Sequence No. 4). 

4.2.4 The Contractor shall obtain writ- 
ten approval from the Contracting Officer be- 
fore proceeding with Phase III. 

4.3 Phase III - Validation 

In this phase the Contractor shall demonstrate 
the validity of the Probabilistic Rotor Design 
System (PRDS) design tool. This shall be done 
by designing specimens, and testing them to 
failure in a series of controlled experiments. All 
test hardware shall be designed, fabricated and 
tested in accordance with AFR 800-16 and the 
standards of MIL-STD-882B. The specimens 
shall be designed to simulate the failure behav- 
ior of a turbine rotor disk, and the testing shall 
aim to produce representative failures in the 
specimens. The specimen design shall be ana- 
lyzed using the probabilistic design method and 
the probability distribution of its failure shall be 
determined. The test plan shall be designed to 
produce a statistically significant validation of 
the predicted results, using a design of experi- 
ments methodology. 

4.3.1 Test Definition 

The Contractor shall determine the test articles 
and necessary tests to be used for validating the 
PRDS. The test articles and test methods shall 
be designed so as to provide a clear validation 
of the probabilistic life methodology. The Con- 
tractor shall perform both a deterministic and 
probabilistic life analysis of the test articles. 
The Contractor shall then determine the tests 
required to verify the predictions and their ap- 
plicability to future testing (CDRL Sequence 
No. 6). The Contractor shall review and ap- 
prove the fabrication of the specialized tooling 
required to cyclic spin selected test articles in a 
government facility. 

4.3.2 Test Evaluation 

The Contractor shall fabricate the approved test 
articles and monitor the PRDS validation test- 
ing in accordance with the approved test plan. 
The contractor shall monitor cyclic spin testing 
of selected components until each has failed or 
until economic life has been attained. Fracto- 
graphic examination of selected test articles 
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will be conducted to characterize the location 
(surface, near-surface, subsurface, etc.) and 
nature (ceramic, oxide, nitride, void, crystallo- 
graphic, etc.) of the origin of the fracture. All 
raw test data shall be compiled (CDRL Se- 
quence No. 10) and the Contractor shall make 
an oral presentation to the Air Force (CDRL 
Sequence No. 4). 

4.3.3 PRDS Design Tool 
Refinement 

Based on the results of the validation tests the 
Contractor shall make improvements to the 
PRDS design tool as required. 

4.3.4 The Contractor shall obtain written 
approval from the Contracting Officer before 
proceeding with Phase IV. 

4.4 Phase IV - Application 

In this phase the Contractor shall apply the Pro- 
babilistic Rotor Design System (PRDS) to one 
turbine rotor disk from an advanced technology 
engine. The selected component shall be used 
for a case study addressing the use of the PRDS 
design tool as a means of reducing weight. Rep- 
resentative engine cycle parameters (stress and 
temperature histories) and available materials 
data will be identified and analyzed with the 
refined methodology resulting from Phase II, to 
establish a baseline weight and survival proba- 
bility of the selected components for a specifi- 
cally defined life. 

4.4.1 Probabilistic Redesign 

The Contractor shall redesign and analyze the 
component for the same life as the baseline 
design using the PRDS code, in sufficient detail 
to determine the survival probability and 
weight for comparison to the baseline design. 
The objective of this task is to identify an alter- 

native design that provides a significant weight 
reduction as compared to the baseline design, 
with an acceptable survival probability identi- 
fied in Phase I. At the completion of Phase IV, 
the results shall be reviewed with the Air Force 
(CDRL Sequence No. 4). 

4.4.2 The Contractor shall obtain written 
approval from the Contracting Officer before 
proceeding with Phase V 

4.5 Phase V - Application Test 

In this phase the Contractor shall monitor test- 
ing of the rotor disk which was redesigned in 
Phase IV The disk shall be provided from a 
separately funded contract as GFE. Under a 
separately funded contract, the Contractor shall 
install the disk in a test engine to be run for a 
predetermined number of cycles. After the en- 
gine test, the Contractor shall monitor the disk 
installation in a government facility spin rig 
and monitor testing of the disk to failure. Fail- 
ure analysis shall be conducted and all test re- 
sults shall be evaluated to demonstrate the in- 
tegrity of the design. 

4.5.1 Rotor Components Detail 
Design 

The Contractor shall establish and document 
the design details of the selected rotor disk us- 
ing the Probabilistic Rotor Design System 
(PRDS). The acceptable risk criteria defined 
during Phase I shall be integrated with proba- 
bilistic methods to establish the design allow- 
ables. These allowables shall then be used in 
conjunction with standard design analysis pro- 
cedures such as finite element analysis to estab- 
lish the final component. This detail design 
shall include the statistical probability of fail- 
ure for all primary failure modes. The Contrac- 
tor shall also evaluate the weight and perfor- 
mance payoff obtained by redesigning the com- 
ponent using probabilistic design concepts. 
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4.5.2 Rig Test and Validation for 
Gas Generator Testing 

The Contractor shall monitor and analyze the 
test of the GFE rotor disk to provide final verifi- 
cation of the PRDS and applicability for ad- 
vanced demonstrator engine testing. The Con- 
tractor shall: (1) prepare a test plan defining 
post-engine component testing, (2) review and 
approve design and fabrication of necessary 
test rig adaptive hardware, (3) perform a com- 
plete stress survey. The Contractor shall identi- 
fy and document all instrumentation require- 
ments. The Contractor shall identify the design 
conditions and cycles to be simulated. The 
Contractor shall define evaluation methods for 
analysis and test correlation. The Contracting 
Officer, within 7 days after submittal of the test 
plan (CDRL Sequence No. 6), will inform the 
Contractor by letter if work may proceed on the 
Phase V test items. Following approval by the 
Air Force Contracting Officer, the Contractor 
shall provide the PRDS component for testing 
in a separately funded advanced demonstrator 
engine test. The Contractor shall conduct en- 
gine testing in such a manner as to obtain data 
for verification of the design predictions and 
the applicability of advanced PRDS compo- 
nents in advanced turbopropulsion weapon sys- 
tems. 

4.5.3 Hot Cyclic Spin of 
Component 

The Contractor shall monitor a hot cyclic spin 
test of the GFE rotor disk until it fails. This test 
shall be completed after all potential advanced 
gas generator testing has occurred. The Con- 
tractor shall conduct a post-test failure analysis 
of the rotor component. The results shall be 
compared against predictions from the Proba- 
bilistic Rotor Design System to determine the 
accuracy of the system. The Contractor shall 
review the results of Phase V in an oral presen- 
tation to the Air Force (CDRL Sequence No. 4). 

4.5.4 The Contractor shall obtain writ- 
ten approval from the Contracting Officer be- 
fore proceeding with Phase VI. 

4.6 Phase VI - Method Extension 

In this phase the Contractor shall examine the 
extension of the probabilistic design method to 
other component types and materials. Ad- 
vanced materials, and engine components other 
than rotor disks, shall be classified according to 
their properties, manufacturing methods and 
failure modes, and the applicability of the pro- 
babilistic design system shall be determined. 
Recommendations shall be made for further 
work, including modification or extension of 
the design system. 

4.6.1 PRDS for Metal Matrix 
Composite (MMC) Rotors 

The Contractor shall gather information on the 
properties, behavior and failure modes for 
MMC materials. This information shall be eva- 
luated to determine the possibilities and re- 
quirements for developing statistical models 
for a design system. The Contractor shall deter- 
mine the benefits of a Probabilistic Rotor De- 
sign System for meeting MIL-STD-1783 En- 
gine Structural Integrity Program (ENSIP) and 
IHPTET Requirements for MMC materials. 

4.6.2 Modifications to Military 
Standard 1783 

The Contractor shall develop a modified Mili- 
tary Standard 1783 that incorporates PRDS. 
The modification shall be in a form that can be 
submitted to the Government Committee on 
Military Standards for consideration. 

4.6.3 PRDS Modifications 

The probabilistic life-prediction methodology, 
resulting from Phase II, shall be modified or 
supplemented as applicable to address the fail- 
ure  mechanisms  determined by  Paragraph 
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4.6.1, and the information obtained in Phases Sequence No. 4). 
ffl, IV and V. A plan addressing the compre- 51   The Contractor shall plan for six sta. 
hensive application of the PRDS methodology ms reviews in the form of orai presentations to 
shall be prepared. The plan shall be developed ±& Aif Force at Wright-Patterson Air Force 
to include both isotropic and anisotropic mate- Base (CDRL Sequence No. 4). 
rials. The results of Phase VI shall be reviewed 
in an oral presentation to the Air Force (CDRL 
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Appendix B 

The scatter inherent in small scale sampling is 
significant and absolutely unavoidable. Repeat 
samples of size 20 could be expected to yield 
distributions as shown in Figures B.l through 
B.4. (A count somewhere on the order of 20 

*£*- 

Figure B.1. Reproducibiiity -10 Random 
Samples of Size 20. 

inclusions is not untypical for a single half- 
pound HLS sample.) 
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Figure B.3. Reproducibiiity - 30 Random 
Samples of Size 20. 
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Figure B.2. Reproducibiiity - 20 Random 
Samples of Size 20. 
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Figure B.4. Reproducibiiity - 40 Random 
Samples of Size 20. 
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Appendix C 

The following templates were used to produce the analyses presented in Section 2.1. 

Direct Integration 

table 1 initialize 

table 1 column Z from -6 to 6 # 1000 

table 1 set Z = Z + 0 

table 1 set PROB = (1/sqrt(2*pi))*exp(-((Z-0)**2)12) 

Define X-distribution 

distribution input X (table) 1 Z (format) density 

table 1 initialize 

table 1 column Z from -6 to 6 # 1000 

table 1 set Z = Z + 0 
table 1 set PROB = (1/sqrt(2*pi))*exp(-((Z-3)**2)/2) 

Define Y-distribution 

distribution input Y (table) 1 Z (format) density 

table 2 initialize 

V =   0.7 
table  2  write newt V 

V =  1.3 
table  2  write new# V 

V =  2.0 
table  2  write newt V 

Construct table of V-values 

loop start 

loop over (table) 2 

Loop over the V-table 

Define expressions used to compute expr  B   :    (X+V)**2   +   (X-V)**2   -  2 
expr C   :    (X**2-v**2)**2  -   (X+v)**2  -   (X-V)**2    Y-limits of integration 

expr  DSCR   :   B**2   -   4*C 

table 1 initialize (width) 30 

table 1 column X from -3.3 to 3.3 # 1000 

Construct table of X-values 

table 1 set B = (expr) B 

table 1 set C = (expr) C 

table 1 set DSCR = (expr) DSCR 

Determine Y-limits of integration 

for each X 
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table 1 flag DSCR .ge. 0 
table 1 set YSQ = (-B + sqrt(DSCR))/2 

table 1 flag YSQ .ge. 0 

table 1 set YLIM = sqrt(YSQ) 

loop start 

loop over (table) 1 

expr : unsf(YLIM - Y) * unsf(YLIM + Y) 

algebra replace YLIM 

Y_INT = (integral) LAST wrt Y 

table 1 writ Y_INT 

loop stop 

expr : (dig) (table) 1 Y_INT (lin) X (lin) 

X_INT = (integral) LAST wrt X 

table 2 write X_INT 

loop stop 

submit 
rm example.1.out 

done 

table 2 output V X_INT 

example.1.out 

Loop over the X-table 

Define Y-integrand as 1 between 

±YLIM and 0 elsewhere 

Evaluate the Y-integral and write to 

the X-table 

End of the X-table loop 

Define X-integrand as the X- 

digitized function of the Y-integral 

Integrate this function; Write to 

the V-table. (X_INT estimates 

failure probability) 

End of the V-table loop 

Remove the file example. l. out 

(if it exists) 

Output V and X_INT to 
example.l.out 

Monte Carlo Integration 

table 1 initialize 

table 1 column Z from -6 to 6 # 1000 

table 1 set Z = Z + 0 
table 1 set PROB = (1/sqrt(2*pi))*exp(-((Z-0)**2)/2 

S = 0 
table 1 set S = S + PROB 

Define X-distribution; First 

the probability density function 

Then, integrate to yield the 

cumulative distribution function 
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table  1  read row*  1000 
SUM =  S 
table  1   set  PROB  =  S/SUM 

dist  input X   (table)   1  Z   (format)   cumulative 

table 1  initialize Define Y-distribution 
table 1  column Z  from -6 to  6  #  1000                         First the probability density 

table 1  set  Z  =  Z  +  3 function 
table 1 set PROB = (1/sqrt(2*pi))*exp(-((Z-3)**2)/2)■ 
S =  o Then, integrate to yield the 

table 1  set  S  =  S  +  PROB cumulative distribution function 

table 1 read row* 1000 

SUM = S 
table 1 set PROB = S/SUM 

dist input Y (table) 1 Z (format) cumulative 

table 2 initialize 

V = 0.7 

table 2 write new* V 

V = 1.3 
table 2 write new* V 

V = 2.0 

table 2 write new* V 

Construct table of V-values 

loop start 

loop over (table) 2 

Loop over the V-table 

table 1 init (width) 15 

table 1 rand X Y # 1000000 

Construct table of 1,000,000 

randomly chosen (X, Y) points 

table 1 set DENl = (X - V)**2 + Y**2 

table 1 set DEN2 = (X + V)**2 + Y**2 

table 1 set P = lelO 

table 1 flag DENl .gt. 0 DEN2 .gt. 0 

table 1 set P = 1/DEN1 + 1/DEN2 

Compute pressure at each point 

table 1 flag P .ge. 1 

table 1 set COUNT = 1 

SUM = (table) 1 (sum) COUNT 

Flag points with pressure greater 

than or equal to 1; Count the rows 

and divide by 1,000,000; Write to 
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FRACTION = SUM/1000000 

table 2 write FRACTION 

loop stop 

submit 
rm example.2.out 

done 

table 2 output V FRACTION 

example.2.out 

the V-table. (FRACTION 

estimates failure probability) 

End of the V-table loop 

Remove the file example. 2. out 

(if it exists) 

Output V and FRACTION to 

example.2.out 

First Order Reliability Approximation 

table 1 initialize 
table 1 column Z from -6 to 6 # 1000 

table 1 set Z = Z + 3 
table 1 set PROB = (1/sqrt(2*pi))*exp(-((Z-3)**2)/2) 

distribution input Z (table) 1 Z (format) density 

Define Z-distribution 

table 2 initialize 

V = 0.7 
table 2 write new* V 

V = 1.3 

table 2 write new* V 

V = 2.0 

table 2 write new* V 

loop start 

loop over (table) 2 

expr B : (X+V)**2 + (X-V)**2 - 2 
expr C : (X**2-V**2)**2-(X+V)**2-(X-V)**2 

expr DSCR : B**2 - 4*C 

table 1 initialize (width) 30 

table 1 column X from -3.3 to 3.3 # 1000 

table 1 set B = (expr) B 

table 1 set C = (expr) C 

Construct table of V-values 

Loop over the V-table 

Define expressions used to compute 

Y-bounds 

Construct table of X-values 

For each X, determine Y-bound 
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table 1 set DSCR = (expr) DSCR 

table 1 flag DSCR .ge. 0 

table 1 set YSQ = (-B + sqrt(DSCR))/2 

table 1 flag YSQ .ge. 0 

table 1 set YBND = sqrt(YSQ) 

YBND  =   (table)   1   (max)   YBND Determine maximum Y-bound 

expr : unsf(-Z + YBND) 

algebra replace YBND 

Define Z-integrand as 1 below 

YBND and 0 above 

Z_INT = (integral) LAST wrt z 

table 2 write X INT 

Integrate this function; Write to the 

V-table. (Z_INT estimates failure 

probability) 

loop  stop End of the V-table loop 

submi t 
rm example.3.out 

done 

Remove the file example. 3 . out 

(if it exists) 

table  2   output V X_INT 

example.3.out 

Output V and Z_INT to 

example.3.out 
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